
Functional Attribution

Kun Joo Michael Ang

May 14, 2020

Abstract

We develop a framework for attributing the change of a multivariate
function’s value to changes in the input arguments. Starting with a few
desirable basic properties, we discover a few interesting theoretical results
and establish links to common discrete allocation algorithms. The pa-
per establishes various algorithms for implementing functional attribution
under different schemes. It introduces Functional Coordinate Descent, a
function-space analog of the Coordinate Descent algorithm.

Keywords— functional attribution, functional coordinate descent, allocation prob-
lems, surface fitting, linear programming, linear analysis

1 Introduction

We consider C1 functions of the form f(x1, x2, ..., xN) :
∏N
i=1[ai, bi] = Ω → R and

points x,x′ ∈ Ω for N ≥ 2. In line with various applications in data science and
finance, it is often desirable to attribute changes in f to changes in each xi component.
Mathematically, we seek a linear decomposition

f(x′)− f(x) ≈
N∑
i=1

ψi(f,x
′,x) (1)

and we call ψ(f,−,−) a functional attribution of f . We now introduce two basic
properties that are desirable in attributions: null-consistency and completeness.

If x′i = xi =⇒ ψi(f,x
′,x) = 0, then we say that the attribution ψ is null-consistent

with respect to f . ψ is null-consistent if it is null-consistent with respect to all
f ∈ C1(Ω). If in Equation 1 we have strict equality, we say that ψ is complete with
respect to f and similarly, ψ is complete if it is complete with respect to all f ∈ C1(Ω).

Unfortunately, null-consistency and completeness are often insufficient in practice.
Without imposing additional constraints, we can also see that the existence of one
null-consistent and complete method implies the existence of infinitely many such
methods and we lack a canonical method of deciding between them.

1

Let ψ be a null-consistent and complete decomposition. Pick (x′,x) any two points
that differ in two or more coordinates. i.e. x′i 6= xi, x

′
j 6= xj . Then

φk(f, z′, z) =


ψi(f,x

′,x) + 1 if k = i, z′ = x′, z = x

ψj(f,x
′,x)− 1 if k = j, z′ = x′, z = x

ψk(f, z′, z) otherwise

creates another decomposition φ that is also null-consistent and complete.

2 Scale-Invariance

Let g : (x1, x2, ..., xN) −→ (g1(x1), g2(x2), ..., gN (xN)) be a transformation of the
coordinate axes in which each gi is a univariate, continuous and strictly increasing
mapping onto some co-domain in R. Define f̃ as the action of f in the transformed
coordinates, i.e. f̃(g(x′), g(x)) ≡ f(x′,x). Then we can say that the attribution ψ is
scale-invariant with respect to f if ∀ i,x′,x, we have ψi(f,x

′,x) = ψi(f̃ , g(x′), g(x)).
ψ is scale-invariant if it is scale-invariant with respect to all f ∈ C1(Ω).

2.1 Stepwise Allocations

A common functional attribution method involves taking discrete steps from x to x′

in only the coordinates where they differ. This stepwise method is null-consistent,
complete and scale-invariant and its precise statement is as follows.

For any pair of points (x′,x), let S =
{
S1, S2, ..., Sp |x′Si

6= xSi

}
be the set of indices

where their coordinate values differ, and the Si are arranged in some pre-specified
order. Starting from x∗ = x, we change the S1-coordinate value to match x′, then
assign the marginal change in f as the S1-attribution. We repeat this process until
x∗ = x′ and arrive at the following attribution

ψk(x′,x) =

f
(
x +

∑
n≤i

(
x′Sn
− xSn

))
− f

(
x +

∑
n<i

(
x′Sn
− xSn

))
if k = Si

0 if k /∈ S

It is easy to check that the stepwise allocation is, in general, dependent on the order-
ing of indices Si (e.g. f(x, y) = xy, x = (0, 0), x′ = (1, 1)). But if the ordering is
fixed or chosen in some coordinate-free manner, then the resulting allocation will be
scale-invariant. Null-consistency and completeness are clear by construction.

In lieu of having to specify a natural ordering of the coordinate axes, one could instead
ask when the stepwise allocation scheme generates functional attributions ψ(f,−,−)
that are independent of the coordinate ordering. This concept is closely related to the
idea of ‘path-invariance’ that we will explore Section 4. In fact, one can also use the
proof in Section 4 to show that the linear form f(x) =

∑N
i=1 fi(xi) is both a neces-

sary and sufficient condition for the stepwise allocation to be order-independent for
all (x′,x) pairs.

The Shapley Allocation is a path-agnostic approach that first generates all possible
permutations of indices in S, performs the functional attribution for each permutation,

2

then computes each coordinate’s attribution as its average across all permutations. An
even faster approach is the Greedy Allocation, which uses only one permutation, but
selects the Si iteratively to minimize difference in function value. In the event of a tie
between coordinates in the Greedy Algorithm, coordinates can either be chosen ran-
domly, or taken to be the one which allows the minimum absolute function difference
in the following step. Because the Greedy Algorithm relies only on the difference in
function values and not the coordinate axes units, the algorithm is also scale-invariant.

Algorithm 1 Shapley Allocation

Require: x′ 6= x
S = {Si |x′Si

6= xSi}, k = |S|
for σ ∈ Sym(k) do

ψSi
(σ) = f

(
x+

∑
σ(n)≤σ(i)

(
x′Sn
− xSn

))
− f

(
x+

∑
σ(n)<σ(i)

(
x′Sn
− xSn

))
end for

return ψj =


1

|Sym(k)|
∑
σ
ψj(σ) if j ∈ S

0 otherwise

Algorithm 2 Greedy Allocation

Require: x′ 6= x
S = {i |x′i 6= xi}
ψi = 0 if i /∈ S
x∗ = x
while S 6= ∅ do

k = argmin
k∈S

∣∣∣∣f(x∗ + (x′k − xk)
)
− f

(
x∗
)∣∣∣∣

ψk = f
(
x∗ + (x′k − xk)

)
− f

(
x∗
)

S = S\{k}
x∗ = x∗ + (x′k − xk)

end while
return ψ

3 Transitivity

We say an attribution ψ is transitive with respect to a function f if, for all coordi-
nates i and triplets (x,x′,x′′), we have ψi(f,x,x

′′) = ψi(f,x,x
′) + ψi(f,x

′,x′′). ψ is
transitive if it is transitive with respect to all f ∈ C1(Ω).

One important observation that will be useful in Section 4 is that transitivity and
null-consistency are unrelated properties. To better demonstrate that fact, consider
the following example.

3

Let Ω = [0, 1]2 and f((x1, x2)) = x1+x2. Define ψi(f,x,x
′) = x′i−xi for i = {1, 2} as a

functional attribution ψ of f . It is easy to verify that ψ is null-consistent and transitive
with respect to f . Now define the regions A = [0, 0.5]× [0, 1] and B = (0.5, 1]× [0, 1]
and the following functional attributions.

φi(f,x,x
′) =


2 i = 1, x = (0, 0), x′ = (1, 1)

0 i = 2, x = (0, 0), x′ = (1, 1)

ψi(f,x,x
′) otherwise

θi(f,x,x
′) =


ψi(f,x,x

′) + 1{i=1} − 1{i=2} x ∈ A, x′ ∈ B
ψi(f,x,x

′)− 1{i=1} + 1{i=2} x ∈ B, x′ ∈ A
ψi(f,x,x

′) otherwise

It can be verified that with respect to f , φ is null-consistent but not transitive and θ is
transitive but not null-consistent. As a side remark, all three attributions are complete
with respect to f and if we define the component attribution as the component-wise
contributions to f((x1, x2)) = x1 +x2, then it is possible to define ψ, φ, θ in a way that
they are also scale-invariant with respect to f .

4 Line Integrals and Path-Invariance

Notice that in all the properties discussed thus far, all definitions still hold even for
f /∈ C1(Ω). In this section, we will explore how the differentiability of f induces a
natural functional attribution via a line integral.

Start by defining C(x,x′) as a function that returns a continuous path from x −→ x′.
Examples include a straight line in RN , or an ordered linear combination of the N
basis lines. Since f ∈ C1(Ω), we can express the differential df =

∑N
i=1

∂f
∂xi

dxi, and
integrate both sides to get

f(x′)− f(x) =

N∑
i=1

∫
C(x,x′)

∂f

∂xi
dxi

which we notice forms a linear decomposition into N components. Therefore, by spec-
ifying C, a method of connecting points in the domain, this induces the attribution
ψC(−,−,−). We refer to this attribution as the natural decomposition of f with
respect to a path function C. The stepwise allocation above is one such example.

We will now investigate some properties of ψC . Completeness is easy to check. To
show how null-consistency and transitivity are not guaranteed, consider the following
scenario in Figure 1 where f(x, y) = xy, Ω = [0, 1]2, x = (0, 0) and x′ = (1, 1). Let
C(x,x′) = A, C(x′,x) = B and C(x,x) = {x}. The path x −→ x′ −→ x shows

that ψC is not transitive. If we instead define C′(x,x) = A + B, then ψC
′

is not
null-consistent. This example also shows how the sensitive the functional attributions
the way C is specified. Using the same domainan and function, define C(x,x′) to
be the straight line connecting x to x′, independent of f . In the example above this

4

Figure 1: Paths from (0, 0) to (1, 1)

corresponds to path P . Now apply a non-linear transformation g(x) = x̃ and let C̃ be
the new straight-line path. The attributions are now∫

C̃

∂f

∂x̃i
dx̃i =

∫
C̃

∂f

∂x̃i

∂x̃i
∂xi

dxi =

∫
C̃

∂f

∂xi
dxi

which correspond to the original integral along a different path. In the example
above, g((x, y)) = (

√
x, y) and the new path corresponds to Q. We can verify that

ψC1 (f,x,x′) = 1
2

and ψC̃1 (f̃ , g(x), g(x′)) = 2
3

is not scale-invariant under the original

definition of C. This can be fixed by having C(f̃) detect coordinate deformations
relative to f and choosing the path that maps to P in the reference basis. But this is
undesirable as it requires selecting a canonical basis, and in practice there might not
be a strong reason to prefer one over another.

There are two solutions to restoring scale-invariance. One method is to restrict C to
paths that are piecewise combinations of the N basis lines. These straight line paths
map to the same straight line paths under any reparameterization because the coor-
dinate axis transforms are univariate. Alternatively, we could restrict f to functions
where the attribution integrals are path-independent. More precisely, ∀i, C(−,−),∫
C

∂f
∂xi

dxi = ψ∗i (x,x′). When this is true, we say that the natural decomposition of
f is path-invariant. Note that path-invariance is a stronger condition than scale-
invariance, since the path deformations are not restricted to continuous, strictly in-
creasing rescalings of the coordinate axes, but over all path deformations with the
same start and end points.

It turns out that if f can be written as f(x) =
∑N
i=1 fi(xi) for some fi ∈ C1[ai, bi],

this is both a necessary and sufficient condition for the natural decomposition to be
path invariant. Sufficiency is easy to check as each coordinate’s attribution becomes
fi(x

′
i)− fi(xi). To show necessity, we prove the contrapositive.

Suppose f cannot be written in the form f(x) =
∑N
i=1 fi(xi). Recall the differen-

5

tial form df =
∑N
i=1

∂f
∂xi

dxi which holds for any path integral since f ∈ C1(Ω). Then

at least one of the partial derivatives ∂f
∂xi

must have dependence on other coordinates

xj1 , ..., xjk where i /∈ {j1, ..., jk}, otherwise integrating both sides of the differential
leads to a contradiction. There therefore must exist points x 6= x′ such that xi = x′i
but ∂f

∂xi
(x) 6= ∂f

∂xi
(x′). Without loss of generality, let ∂f

∂xi
(x′) > ∂f

∂xi
(x) and consider

the following paths in Figure 2. A : x −→ (x + εxi), B : (x + εxi) −→ (x′ + εxi),
B′ : x −→ x′ and A′ : x′ −→ (x′ + εxi). Along paths A and A′, we change only the
xi components by increasing them monotonically, and along paths B and B′, we do
not change the xi components. Then the functional attribution of f(x′ + εxi)− f(x)
in the xi component is represented by the path integrals along A and A′ in the two
paths. Since fi ∈ C1, ∂f

∂xi
(x′) > ∂f

∂xi
(x) means that for ε > 0 sufficiently small,∫

A′
∂f
∂xi

dxi >
∫
A

∂f
∂xi

dxi and by comparing ψCi along paths A+B and B′+A′, we have
that the natural decomposition of f is not path-invariant.

Figure 2: Paths from X to X ′ + dXi

Lemma 1. The following are equivalent:

1. The natural decomposition of f is path-invariant.

2. There exists a decomposition of the form f(x) =
N∑
i=1

fi(xi)

3. ψC(f,−,−) is null-consistent with respect to f for all C ∈ Θ

4. ψC(f,−,−) is transitive with respect to f for all C ∈ Θ

where Θ := {M(x,x′) : [0, 1] → Ω
∣∣M(0) = x, M(1) = x′, Mi ∈ C0[ai, bi]} is the set

of path functions that connect any (x,x′) pair via a continuous path.

Proof. (1) ⇐⇒ (2): Shown above.

(2) ⇐⇒ (3): “ =⇒ ” is clear. “ ⇐= ” is shown by following the above construction
and considering the path C(x,x′) = A+B −A′ and checking that ψCi (x,x′) < 0.

(4) ⇐⇒ (2): “ =⇒ ” is clear. “ ⇐= ” is shown by following the above con-
struction and considering the paths C(x,x′ + εxi) = A + B, C(x′ + εxi,x

′) = −A′,
C(x,x′) = B′, and checking that ψCi (x,x′) = 0 6= ψCi (x,x′ + εxi) + ψCi (x′ + εxi,x

′).

6

As a final remark, functional forms f(x) =
∑
i fi(xi) are highly desirable because they

induce a natural decomposition for functional attribution without the need to specify
a path function connecting points in Ω. We get null-consistency and transitivity from
Lemma 1, completeness by construction and scale-invariance from path-invariance.

5 Surface Fitting

Suppose now that we are seeking a functional attribution but our underlying function
is not of the form f(x) =

∑N
i=1 fi(xi). One compromise is to somehow approximate

f with the surface f(x) ≈ f̂(x) =
∑N
i=1 f̂i(xi). The functional attribution is induced

by f̂ and the residual ε(x) = f(x)− f̂(x) is treated as surface ‘noise’. This approach
allows our attribution to have all above properties except completeness. We will now
investigate some techniques for computing f̂ by minimizing ‖ε‖ under various norms.

5.1 Weighted L2 Norm - Generalized

Let Ωi denote the domains for each of the coordinates xi. We define the weighted
inner product

(f, g) =

∫
Ω1

· · ·
∫

ΩN

f
(
X1, . . . , XN

)
g
(
X1, . . . , XN

)
w
(
X1, . . . , XN

)
dX1 . . . dXN

where w : Ω → R>0 is positive, continuous and integrable over the full domain Ω.
Minimizing the residual with respect to the weighted norm yields the following opti-
mization:

L = min
f1,...,fN

∫
Ω

(
f −

N∑
k=1

fk
)2
w dX (2)

For notational convenience, we suppress the arguments of each function and denote
dX := dX1...dXN . Furthermore, let Ω−i denote the integral over all domains excluding
Ωi, and dX−i its corresponding differential. The minimization can be written as

min
f1,...,fN

∫
Ωi

[∫
Ω−i

R2
iw dX−i

]
− 2fi

[∫
Ω−i

Riw dX−i

]
+ f2

i

[∫
Ω−i

wdX−i

]
dXi

where Ri := f −
∑
k 6=i

fk are the fitted residuals excluding fi.

Applying the Euler-Lagrange equation in each Xi coordinate means that at any ex-
tremum point

∑
f∗i ,

f∗i (Xi) =

∫
Ω−i

(
f −

∑
k 6=i

f∗k
)
w dX−i∫

Ω−i

wdX−i

(3)

Unfortunately, the optimal f∗i are implicit solutions to a system of N integral equa-
tions. Depending on the Xi-dependence in w, neat closed-form solutions might not
exist. We will see later that if w is separable, i.e. w =

∏
i wi(Xi), then these integrals

simplify somewhat. But for general weight functions, the implicit dependence moti-
vates the creation of Algorithm 3, which we call Functional Coordinate Descent(FCD).

7

A few quick remarks about FCD in the context of our weighted L2 norm: Using a
small change of notation, L refers to the weighted error defined in Equation 2 as a
function of (f1, f2, ..., fN), rather than the scalar minimum itself. In Line 5 of Algo-
rithm 3, the minimum can be directly computed using Equation 3 as

fsi (Xi) =

[∫
Ω−i

(
f −

∑
k<i

fsk −
∑
k>i

fs−1
k

)
w dX−i

][∫
Ω−i

wdX−i

]−1

Algorithm 3 Functional Coordinate Descent

Require: Initial f0
i for i = 1, 2, ..., N

Functional L : (f1, f2, ..., fN)→ R
Error tolerance τ

1: s = 0, converged = False
2: while ¬ converged do
3: s = s+ 1
4: for i ∈ [1, 2, ..., N] do
5: fsi (Xi) = argmin

g(Xi)

L(fs1 , ..., fsi−1, g, f
s−1
i+1 , ..., f

s−1
N)

6: end for
7: Ls = L(fs1 , fs2 , ..., fsN)
8: if Ls−1 − Ls < τ then
9: converged = True

10: end if
11: end while
12: return fsi i = 1, 2, ..., N

We will now prove some convergence properties of FCD. In standard Coordinate De-
scent(CD), if L(x) = g(x) +

∑
i h(xi) where g is convex, differentiable and each hi

convex, then CD converges to the true minimizer x∗. Not surprisingly, there is an
analagous result in FCD, provided we impose a few additional constraints.

Theorem 1. Let ~f = (f1, ..., fN) ∈ Θ denote a set of solution vectors where the
arguments fi : Ωi → R are functions and Θ compact. Let ‖ · ‖θ be a norm over Θ and

L : ~f → R a positive strictly convex, Gateaux differentiable, continuous functional on
Θ. Assume Step 5 of the FCD algorithm always returns solution vectors in Θ provided
~f0 ∈ Θ. Then if ∃ ~f∗ ∈ Θ such that either

1. ∃N ∈ N such that ∀s ≥ N, ~fs ≡ ~f∗

2. ~fsi → ~f∗ and L Lipschitz.

then ~f∗ is the unique minimizer of L over Θ. Here ~fs denotes the sequence of iterates
from Step 7 of FCD and ~fsi denotes the sequence of sub-iterates from Step 5. Each
while loop adds 1 and N terms to each sequence respectively.

Proof. Before we begin the proof, we must state that two solution vectors are defined
to be equal if their inner product (defined by ‖·‖θ) is 0. This does not imply that their
corresponding functions have to be pointwise identical in each of the N indices. For
example, we can take ‖ · ‖θ to be the L2-norms summed over the indices and Θ as the

8

space of solution vectors of N square-integrable functions. Then two solution vectors
that differ at only finitely many points in each index will have 0 inner product. In the
proof below, when we refer to a solution vector ~f , we are referring to the conjugacy
class of solutions which contains ~f and Θ as the space of conjugacy classes.

We can now make some statements about L over Θ. Since Θ is compact and L contin-
uous and bounded below (by positivity), the Extreme Value Theorem tells us it attains

a minimum over Θ at some ~f∗. These compactness and boundedness properties can
be relaxed if we instead directly assume a minimizer exists. ~f∗ must also be unique by
strict convexity of L, otherwise L(1

2
(~f∗1 + ~f∗2)) < L(~f∗1), violating the minimality of ~f∗1 .

ψ ∈ Θ is said to be unidimensional if ∃ i ∈ {1, 2, ..., N} s.t. ψi 6≡ 0 and ∀j 6= i, ψj ≡ 0.
~f is said to be a stationary point in Θ if its Gateaux derivative

d(~f, ψ) = lim
s→0

L(~f + sψ)− L(~f)

s

is 0 for all unidimensional ψ. Clearly, ~f∗ must be a stationary point.

Additionally, ~f∗ is the only stationary point in Θ. Suppose otherwise, that ~g is also
stationary and define φ = (~f∗ − ~g) and ∆ = L(~f)− L(~g) < 0. By convexity,

∀ ε ∈ (0, 1) L(~g + εφ) < L(~g) + ε∆

Now consider and L(~g + εφ) in the limit as ε → 0 and we get d(~g, φ) = −δ for some
δ < 0. This means we must have L(~g − εφ) = L(~g) + εδ + o(ε). Now let φ ≡

∑N
i=1 φi

be the unique unidimensional decomposition of φ. Then

~g + εφ =
1

N

N∑
i=1

(~g − εNφi) =⇒ L(~g − εφ) <
1

N

N∑
i=1

L(~g − εNφi)

=
1

N

N∑
i=1

L(~g) + o(εN)

= L(~g) + o(ε)

where we first use convexity of L and then the stationarity of ~g. But this is a contra-
diction, since L(~g − εφ)− L(~g) = εδ + o(ε).

Our goal now is to show that the FCD algorithm converges to this unique station-
ary point. Since the N sub-iterates in Steps 4-6 of the algorithm are decreasing in
value, Ls must also form a positive, decreasing sequence. We now assert that if at
some s we have Ls−1 = Ls, then ~fk ≡ ~fs−1 for all k ≥ s. First label the sub-iterates as
~fs(k) = (fs1 , ..., f

s
k , f

s−1
k+1 , ..., f

s−1
N), where ~fs(0) = ~fs−1 and ~fs(N) = ~fs. If Ls−1 = Ls,

then L(~fs(k)) must also be constant in k. If ~fs−1 6≡ ~fs, then there exists some small-

est index i where ~fs(i) 6= ~fs(i− 1). But since all ~fs(k) ∈ Θ and L strictly convex by

assumption, the solution ~f+ = 1
2
[~fs(i) + ~fs(i − 1)] must have L(~f+) < L(~fs(i − 1)).

But since ~f+ differs from ~fs(i − 1) in only the ith functional, this contradicts the

minimality of Step 5. Therefore, ~fs+1 ≡ ~fs. It is easy to see that ~fs is stationary,
~fk ≡ ~fs−1 for all k ≥ s and we have converged to the unique minimizer.

9

If instead Ls is strictly decreasing, apply the assumption that ~fsi → ~f+ for some
cluster point ~f+ ∈ Θ. We will now show that this cluster point is stationary and
therefore minimal. Suppose otherwise, then there exists some scalar k, coordinate
i and unidimensional ψi such that L(~f+ + kψi) < L(~f+). Let K be the Lipschitz

constant of L. Then by picking ε = L(~f+)−L(~f++kψi)
3K

, and applying the Lipschtiz In-

equality, ∃N such that ∀s > N, |L(~fsi)−L(~f+)| ≤ L(~f+)−L(~f++kψi)
3

. But applying the

same Lipschtiz inequality also yields |L(~fsi + kψi)−L(~f+ + kψi)| ≤ L(~f+)−L(~f++kψi)
3

and we have L(~fsi + kψi) < L(~fsi), which directly contradicts Step 5 of the FCD algo-
rithm.

If the coordinate axes are orthogonal, which is to say that for any f = (f1, f2, ..., fN),
‖f‖Θ =

∑N
k=1 ‖ψk‖Θ where ψi = (0, ..., 0, fi, 0, ..., 0), then convergence of the sub-

iterates ~fsi → ~f∗ can be replaced by convergence of the iterates ~fs → ~f∗.

Let’s apply the FCD algorithm with L as the weighted L2 error defined in Equation 2.
Pick Θ to be the space of solution vectors that are L2 integrable in each coordinate and
‖(f1, ..., fN)‖Θ =

∑
i ‖fi‖L2 . We can check that L is indeed positive, strictly convex,

Gateaux-differentiable and continuous. It is also easy to intuit from the continuity of
L and the observation that L(~f) → ∞ as ‖~f‖Θ → ∞ that a minimizer ~f∗ exists. If
f is L2-integrable over Ω and f0

i L2-integrable in each coordinate i, then ∀ s, i, the
sub-iterates fsi (Xi) will also be integrable. These conditions allow us to apply the
results of Theorem 1.

5.2 Weighted L2 Norm- Separable

If the weighting function is separable, w(X1, X2, ..., XN) =
∏
i wi(Xi), then the f∗i

can instead be computed explicitly. Starting with Equation 3,

f∗i (Xi) =

∫
Ω−i

(
f −

∑
k 6=i

f∗k
)
w dX−i∫

Ω−i

wdX−i

=

∫
Ω−i

fw dX−i∫
Ω−i

wdX−i

−
��wi

∫
Ω−i

∑
k 6=i

f∗k

(∏
s 6=i

ws

)
dX−i

��wi
∏
s 6=i

[∫
Ωs

wsdXs

]

=

∫
Ω−i

fw dX−i∫
Ω−i

wdX−i

− λi

where in the second line we observe that the second term is independent of Xi and
replace it with a scalar λi. This is well-defined, as positivity in w guarantees that wi
and

∫
Ωs
wsdXs are non-zero. The solutions f∗i (Xi) can be interpreted as the weighted

average of f(−, Xi,−) over the other coordinate axes.

For the purpose of functional attribution, it is sufficient to solve f∗i as above with

10

λi ≡ 0. To recover the optimal fit, we can write f̂ =
∑
i f
∗
i + λ and recover

λ =
[∫

Ω

(
f −

∑
i f
∗
i

)
wdX

][∫
Ω
wdX

]−1

.

5.3 Other Norms

Denoting the surface residual E = f −
∑
i fi, we might wish to penalize not just its

absolute error, but also its derivative. This introduces the weighted H1-norm

min
f1,...,fN

∫
Ω

E2w1(X) +

[(
∂E

∂X1

)2

+ ...+

(
∂E

∂XN

)2
]
w2(X) dX

where we allow w1 6= w2. Once again, we rewrite the integral.

min
f1

∫
Ωi

[
A(Xi)f

2
i − 2B(Xi, Ri)fi + C(Xi)

(
∂fi
∂Xi

)2

− 2D(Xi)
∂fi
∂Xi

]
dX

A =

∫
Ωi

w1 dX−i B =

∫
Ωi

w1Ri dX−i

C =

∫
Ωi

w2 dX−i D =

∫
Ωi

w2
∂f

∂Xi
dX−i

Because the integrand now involves the first derivative, we must be more careful with
our boundary conditions. Let’s impose that A,B,C,D all have continuous partial Xi-
derivatives and that all the first-order partial derivatives in every coordinate vanish at
the boundaries. Then an application of the Euler-Lagrange equation yields

Af∗i −B(R∗i) = Cf̈∗i + Ċḟ∗i − Ḋ (4)

where a dot denotes the derivative with respect to Xi. Much like in Section 5.1, solu-
tions to Equation 4 have implicit dependence on R∗i . furthermore, there are no general
methods for solving second-order linear ODEs with variable coefficients, although it
can be proved that a unique solution exists if we impose vanishing first derivatives
at the boundaries. Numerical schemes for approximate solutions exist and one such
example can be found in [2]. These schemes allows us to use the FCD algorithm where
in Step 5 we apply the numerical solution to Equation 4. This guarantees an itera-
tive reduction of the weighted H1 error, and if instead of L2 integrability we enforce
H1-integrability in each coordinate function, we can once again apply Theorem 1 to
recover convergence.

Unfortunately, the surface fitting technique using the weighted L2 or H1 norm is
scale-dependent. For example, if we were to rescale X1 −→ lnX1 in the L2 norm, the
optimization becomes

L = min
f1,...,fN

∫
Ω

(
f −

N∑
k=1

fk
)2
wX−1

1 dX

In general, any reparameterization will introduce the determinant of the Jacobian into
the integrand. One solution is to minimize the residuals under the L∞ norm,

L = min
f1,...,fN

sup
X∈Ω

∣∣∣[f(X)−
N∑
k=1

fk(Xk)
]
w(X)

∣∣∣
and both the fitted surface

∑
f∗k and the residual L∗ are scale-invariant.

11

5.4 Implementation

In practice, FCD is difficult to implement in its analytic form and we instead choose to
discretize the problem. For each coordinate’s domain Ωi, pick a set of basis functions
ψi1, ..., ψ

i
mi

associated with a finite mesh xi1 < xi2 < ... < xini
. We then construct f∗i as

a linear combination of these basis functions. This is especially useful in the L2 norm,
where the coefficients can be recovered as the solution to a system of linear equations.

For example, we might choose to construct each f∗i as a cubic spline within the knots
xi1 < xi2 < ... < xini

and 0 outside the boundary. The free variables in our optimization
are therefore yi1, ..., y

i
ni

and di1, ..., d
i
ni

, the values and derivatives of the spline at the
knots. Between two consecutive nodes xa, xb, this corresponds to four basis functions.

ψya+ = 2

(
x− xa
xb − xa

)3

− 3

(
x− xa
xb − xa

)2

+ 1

ψda+ =

(
x− xa
xb − xa

)3

− 2

(
x− xa
xb − xa

)2

+

(
x− xa
xb − xa

)
ψ
yb
− = −2

(
x− xa
xb − xa

)3

+ 3

(
x− xa
xb − xa

)2

ψ
db
− =

(
x− xa
xb − xa

)3

−
(
x− xa
xb − xa

)2

These basis functions are 0 for x /∈ [xa, xb] and each function sets exactly one of
the variables ya, yb, da, db to 1 and the others to 0. For general L we perform the
optimization in Step 5 of the FCD algorithm over this set of bases. However, under
the weighted L2 norm, we can go a step further.

min
fk

∫
Ω

(∑
k

fk

)2

w − 2f

(∑
k

fk

)
wdX

= min
yka ,d

k
a

∫
Ω

(N∑
k=1

nk∑
a=1

[
ykaψ

ya
± + dkaψ

da
±

])2

w − 2f

(N∑
k=1

nk∑
a=1

[
ykaψ

ya
± + dkaψ

da
±

])
wdX

= min
αk
a

∑
α,β,k,l,a,b

αkaβ
l
bAαβklab − 2

∑
α,k,a

αkaFαka

where

Aαβklab =
∑
p,q

∫
Ω

ψ
αk
a

p ψ
βl
b
q w dX and Fαka =

∑
p

∫
Ω

ψ
αk
a

p fw dX

and α, β ∈ {y, d}, k, l ∈ {1, ..., N}, a ∈ {1, ..., ik}, b ∈ {1, ..., il}. The signs p, q ∈
{+,−} except at the boundary points, where p ≡ + if a = 1 and p ≡ − if a = ik. The
optimal coefficients αka can then be recovered implicitly as the solution to the following
linear system. ∑

α,k,a

Aαβklab α
k
a = Fβlb

If each of the N dimensions has M nodes, we can reparameterize F → R2MN a single
vector and A → R2MN×2MN a dense matrix with 2M(N − 1) + 6 diagonal entries.
Inverting this matrix is computationally difficult.

12

But if the weighting function in the L2 norm is separable, then using a piecewise-
constant basis in each dimension, we can recover explicit solutions as in the continu-
ous case. Although this introduces discontinuities in the fitted surface, the piecewise-
constant solution converges to the continuous version in the limit as the meshes become
finer. For each dimension i and mesh xi0 < xi1 < ... < xini

, define the basis functions
φis = 1{Xi ∈ (xis−1, x

i
s)}. As before, we seek solutions λki to the system of linear

equations ∑
l,j

Aklij λ
l
j = Fki

where

Aklij =

∫
Ω

φki φ
l
jw dX and Fki =

∫
Ω

φki fw dX

Applying separability of w = w1w2...wN , define

W =

∫
Ω

w dX and ηki =

∫
Ωi
φkiwi dXi∫

Ωi
wi dXi

then

Fki =
∑
l,j
l 6=k

Wηki η
l
j λ

l
j +

∑
j

λkj

∫
Ω

φki φ
k
jw dX

=
∑
l,j
l 6=k

Wηki η
l
j λ

l
j +Wηki λ

k
i

= W

∑
l,j
l 6=k

ηlj λ
l
j + λki

 ηki

= W
(
ck + λki

)
ηki

where in the second line we use orthogonality of φki , φ
k
j for i 6= j and the fourth line we

replace the sum with a constant dependent only on dimension. The explicit solution
is therefore

f̂ =
∑
k,i

λki φ
k
i +

1

W

[∫
Ω

fwdX +
∑
k,i

λki Fki

]
where λki =

Fki
Wηki

by once again setting ck ≡ 0 for all k and solving for the final shift.

If we want to implement the L∞ norm minimization numerically, we need to com-
press the N -dimensional mesh xi1, ..., x

i
ni

for i = 1, ..., N into a single vector of length

M =
∏N
i=1 ni. The basis functions ψis(x) := 1{xi=xis} are also represented in this

M -dimensional vector as basis elements β1, ..., βK where K =
∑
i ni. The linear pro-

gramming problem can then be written as follows:

min
A

max
i∈{1,..,M}

∣∣∣f −A1β1 −A2β2 − ...−AKβK
∣∣∣
i

13

or using the conventional notation,

Minimize λ subject to ATβ + λe ≥ f

ATβ − λe ≤ f

where e denotes the vector of ones. This problem has a dual which can be written in
the form

Maximize fT (π′ + π′′) subject to A(π′ + π′′) = 0

eT (π′ − π′′) = 1

π′ ≥ 0, π′′ ≤ 0

which can be solved using the traditional simplex method. Further details on this
technique can be found in [1].

6 Final Remarks

Functional attribution is an interesting sub-field of mathematics that combines various
ideas in Group Theory, Linear Analysis and Numerical Analysis. Although we have
laid the groundwork and discovered some preliminary results, there are still plenty of
interesting extensions to investigate.

On the theoretical side, there are several open questions. If we relax the f ∈ C1

condition to C0, what additional constraints do we need so that we can still recover
meaningful results? Can we relax some conditions in the FCD algorithm and still
guarantee convergence? Are there other natural ways to define an attribution?

More practical examples include data-driven problems such as portfolio performance
attribution in finance, where we lack explicit knowledge of the underlying function f .
With only observations (x1, f(x1)), ..., (xS , f(xS)), we need to determine a suitable
method to infer f from the data before we can apply functional attribution. A simple
fitted model that allows us to do both simultaneously is

f(x) =
∑
i

fi(xi) + ε

where the ε are i.i.d. errors. This motivates the development of a more rigorous statis-
tical framework that allows for non-parametric estimates of fi, heteroskedastic errors,
asymptotic results for convergence, etc.

If there is some Markovian structure governing the evolution of x, such as a diffusion
process, then we can relax the path invariance requirement. The functional attribution
can be computed by integrating along the path corresponding to the geodesic between
two points, or as an average over all connecting paths weighted by their likelihoods.
Under such a structure, transitivity is no longer as desirable. There is room to discover
meaningful properties and useful results in this space.

14

References

[1] R. D. Armstrong and M. G. Sklar. A linear programming algorithm for curve fitting
in the l∞ norm. Numerical Functional Analysis and Optimization, 2(2-3):187–218,
1980.

[2] A. W. III and G. B. Costa. Solving second-order differential equations with vari-
able coefficients. International Journal of Mathematical Education in Science and
Technology, 39(2):238–243, 2008.

15

