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Abstract

This paper examines the multi-armed bandit problem in the case where
the bandits’ rewards are drawn from stationary but unknown distribu-
tions. Unlike the classical problem, players must factor in the informa-
tional value of each future sample to balance exploration against exploita-
tion. Using no distributional assumptions, we derive some properties of
the optimal strategy, using the notion of a bandit’s fair-value. Then, by
restricting the class of possible distributions, we cast the problem in a
Bayesian framework and find complete solutions through dynamic pro-
gramming and an updating prior. We find upper and lower bounds for
each bandit’s fair value and in the special case of a normal distribution,
explicit formulae and numerical simulations are computed.

Keywords— multi-armed bandit problems, stationary unknown distribution, ex-
ploration, exploitation, dynamic programming, Bayesian inference, improper prior,
one-step lookahead policy, fair-value

1 Introduction

Consider the problem of a player deciding between M one-armed bandits over T
rounds. Each bandit yields a reward drawn from the distribution fi(x) for i =
1, 2, ...,M . The distributions fi maybe be discrete or continuous and are hidden from
the player. The player wishes to maximize his total expected reward at so over the
T rounds, he must decide between exploration (choosing bandits to reduce the un-
certainty of E[fi]) and exploitation (choosing the bandit with maximum expected
reward conditional on current information). In this particular problem, the distribu-
tions fi are stationary in time, though in general, they do not have to be.

This is a popular problem in reinforcement learning that is typically solved with
approximate algorithms: ε-greedy algorithms, Gradient Bandit Algorithms, Upper
Confidence Bound Action selection, etc) [1]. The first two are probabilistic algorithms
where the decision taken at each step is random, and the third is deterministic. In
several of these applications, a pre-defined learning rate needs to be specified, which
controls how quickly the algorithm updates the estimated value of each bandit. An-
other common drawback of these algorithms is that they often do not take into account
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the number of rounds remaining relative to the E[fi]. Indeed, for the ε-greedy algo-
rithm, once we have low-variance estimates of E[fi], we it makes sense to switch to
exploitation by reducing ε, but what counts as sufficiently ‘low-variance’ should be
higher if there are more rounds remaining. The UCB algorithm similarly does not
take into account the value of exploration relative to the number of remaining rounds,
and only computes a reasonable upper bound for E[fi] relative to the current informa-
tion.

We can use optimization and statistical theory to better quantify exactly when to
switch from exploration to exploitation.

2 Methodology

2.1 Fair Value Bandit

Before we dive into an exact mathematical formulation of the problem, it is helpful to
introduce the notion of a bandit’s fair value. Imagine we are in a situation where we
have exactly two bandits, A and B. A always gives a fixed constant reward λ, while
B gives rewards drawn from a distribution f(X). If f is known to the player, then
λ = E[f ] corresponds to the constant reward that would make the player indifferent
between choosing either bandit. We say that bandit B has fair value λ at time t < T .
It is easy to see that if we know the complete distribution of f , then if we are indif-
ferent between A and B at some time t, then we remain indifferent at all future times
t′ > t. But if the distribution of f is unknown to us, then the result not longer holds.
Future realizations of rewards from B might change our estimate of E[f ], making one
bandit strictly preferred over the other.

However, in such a scenario, there is still the notion of weak indifference, where we
are indifferent between A and B at some time t. Furthermore, we can also show that
for all times t < t′ ≤ T , it is never better to switch to B if your previous choice
was A. To formalize this, let’s consider a filtration Ft := σ(Xi | i < t) where Xi de-
notes the reward received from the bandit chosen at time i. Suppose now we have
a strategy X which chooses A at time t, then switches to B at t + 1. We also have
an alternate strategy X̃ which follows X for t′ < t, but chooses B and A at times t,
t+1 respectively. Immediately after, X̃ will mirror the decision X under the filtration
σ(X1, ..., Xt−1, X̃t, X̃t+1). The stationarity of the distribution means that

E

[
E

[
T∑

i=t+2

Xi

∣∣∣Ft+2

]∣∣∣Ft] = E

[
E

[
T∑

i=t+2

X̃i

∣∣∣F̃t+2

]∣∣∣Ft]

as the decisions made at t′ ≥ t + 2 have the same number of realizations of f , and
the information is identical at t′ = t. Also, since X and X̃ both have exactly one
realization from A and B, their total expectations from t to t + 1 are equal. This
shows that if a strategy calls for switching from A to B, it is equally as good to reverse
the order, selecting B then A, before returning to the original strategy.

In fact, it is better to select B first, since max(λ, E[f |F̃t+1]) ≥ λ. At time t + 1,
we always have the option of choosing between A or B, which dominates a fixed strat-
egy. If we choose B, we are also not worse off at future times t′ ≥ t+2, as we can always
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ignore the information gained from the extra realization. This leads to the intuitive
conclusion that the value of each state is a function of only the time remaining and the
prior (unordered) samples of B. Furthermore, with the same time remaining, the total
expected future reward increases with the number of prior samples of B. Note that this
result holds true in expectation over the samples, and not for specific realizations of B.

The idea of a fair value bandit offering constant reward gives us a way of comparing
bandits in the multi-armed problem. At any time t, each bandit i has an associated
unique fair value λi(t,Ft). If a bandit offering constant reward λi for all future rounds
was added at time t, we would be indifferent between i and this new bandit. The best
bandit to choose at time t is therefore the one with the highest fair value. Note that
these λi need to be reevaluated at each timestep, even if no new information is gained
about i. Similar to an option in the financial markets, the time value of exploration
is lost with each round. Indeed, if the information was exactly the same at an early
round t′ and a later round t, the player at t′ always has the option of picking the
constant reward up to time t. However, because he also has the option (but not the
obligation) to pick i and potentially gain more information, a higher constant reward
is needed to achieve fair value. We can therefore focus exclusively on the problem of
finding a bandit’s fair value and this will generalize to the solution of the stationary
multi-armed case.

2.2 Distributional Assumptions

Any strategy X will depend on the underlying distributional assumptions placed on
fi, but there are a few general results that hold.

The Central Limit Theorem tells us that X1, X2, ...XN drawn from distribution f
with finite first and second moments µ = E[X] and σ2 = E[(X − µ)2] satisfies

µ̂− µ
σ/
√
N

d−→ N (0, 1)

where µ̂ = 1
N

∑
iXi. We can also replace σ by its estimator s =

√
1

N−1

∑
i(Xi − µ̂)2

µ̂− µ
s/
√
N

d−→ tN

where tN denotes a t-distribution with N degrees of freedom. This allows us to create
confidence intervals around µ. Although for any specific set of realizations we cannot
infer anything about the distribution of µ (as it is some value with probability 1 and
0 everywhere else), for most practical intents, it serves as a good prior and is our best
estimate if we had to assign a distribution to µ.

With this distribution as a prior, we can formulate a simple greedy strategy. In the fair
value bandit problem, we pick bandit B if Eµ[X] ≥ λ. Additionally, Eµ[X] = E[µ] = µ̂
by symmetry of the t-distribution. Translated to the multi-armed bandit problem, the
greedy strategy is to always select the bandit with the highest running mean given the
current information set. Without making any assumptions on the distribution of f ,
this simple strategy is always optimal at T , but not in earlier rounds.
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But to do better than a greedy strategy, we need to be able to model how µ̂ changes
and how we expect it to change in subsequent rounds based on subsequent draws. This
is most easily done in a Bayesian setting, where we have a distributional assumption
on X, say X ∼ N (µ, σ2) with parameters in a domain, say Θ : {θ = (µ, σ) ∈ R×R+}.
If we start with some prior over the distribution parameters θ, then Bayes rules allows
us to update the density of θ, h(θ), conditional on the available information in each
round. The key advantage here is that the prior allows us to simulate subsequent
draws of X using the best information we have at each timestep, which in turn allows
us to compute the expected value of future states. The prior density h0(θ) updates as
follows:

h(θ | Fk) = hk(θ) =

{
Af(Xk| θ)hk−1(θ) if Xk ∈ B
hk−1(θ) otherwise

Here A is a constant of proportionality that ensures hk(θ) remains a valid probability
density. hk(θ) is only updated when new samples are drawn from bandit B. However,
this Bayesian formulation is not without its drawbacks. The initial prior hk(θ) needs
to be specified as well as integrable and this might not always be possible.

2.3 Improper Prior for Gaussian Distribution

Returning to the example of X ∼ N (µ, σ2) with the domain of parameters Θ : {θ =
(µ, σ) ∈ R×R+. Assume that all samples Xi are drawn from B and we have observed
samples X1, X2, ..., Xk. An improper uniform prior at T = 0 has h0(θ) ≡ c and

hk(θ) = Akf(Xk| θ)hk−1(θ)

= Ak

k∏
i=1

f(Xi| θ)

= Ak

k∏
i=1

1√
2πσ2

exp

{
− (Xi − µ)2

2σ2

}

= Ak
(
2πσ2)− k2 exp

{
− 1

2σ2

k∑
i=1

(Xi − µ)2

}

and we can verify that this is indeed a valid probability density.

A−1
k =

∫ ∞
0

∫ ∞
−∞

(
2πσ2)− k2 exp

{
− 1

2σ2

k∑
i=1

(Xi − µ)2

}
dµ dσ

=

∫ ∞
0

(
2πσ2)− k−1

2

∫ ∞
−∞

1√
2πσ2

exp

{
− 1

2σ2

k∑
i=1

(Xi − µ)2

}
dµ dσ

=

∫ ∞
0

(
2πσ2)− k−1

2 exp

{
1
k

(
∑
Xi)

2 −
∑
X2
i

2σ2

}
·

∫ ∞
−∞

1√
2πσ2

exp

{
−
k
(
µ− 1

k

∑
Xi
)2

2σ2

}
dµ dσ

=
1√
k

∫ ∞
0

(
2πσ2)− k−1

2 exp

{
1
k

(
∑
Xi)

2 −
∑
X2
i

2σ2

}
dσ
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An application of the Cauchy-Schwarz inequality gives

r2
k :=

∑
X2
i −

1

k

(∑
Xi
)2

≥ 0

and performing the substitution y =
r2k

2σ2 gives

A−1
k =

1√
k

∫ ∞
0

(
2πσ2)− k−1

2 exp

{
− r2

k

2σ2

}
dσ

=
r2−k
k√

8k · πk−1

∫ ∞
0

y{
k−2
2
−1}e−ydy

=
r2−k
k√

8k · πk−1
· Γ
(
k − 2

2

)
which is finite for all k > 2. As an additional remark, the higher dimensional Bernstein-
von Mises theorem tells us that the posterior distribution over θ will converge to a
Gaussian distribution centered on the Maximum Likelihood Estimator (µ̂, σ̂). Either
by using this result with the symmetry of the Gaussian distribution, or directly inte-
grating over hT−1(θ), we can formulate our strategy for the final round.

E
[
X
∣∣∣FT ] = E

[
X
∣∣∣hT−1(θ)

]
=

∫
Eµ,θ

[
X
]
hT−1(θ)dθ

= AT−1

∫ ∫
µ

T−1∏
i=1

1√
2πσ2

exp

{
− (Xi − µ)2

2σ2

}
dµdσ

= AT−1
1√
T − 1

∫ [
1

T − 1
ST−1

] (
2πσ2)−T−2

2 exp

{
−
r2
T−1

2σ2

}
dσ

=
ST−1

T − 1

where for notational convenience we define

Sk =

k∑
i=1

Xi S2
k =

k∑
i=1

X2
i

Our strategy at T is therefore to pick bandit A whenever λ ≥ E[X | FT ] and bandit
B otherwise. Using Vk to denote the value of the sum of expected future rewards
(following an optimal strategy) at time k, we have

VT (X1, ..., XT−1) = E
[
λ · 1{λ≥E[X|FT ]} +X · 1{λ<E[X|FT ]}

∣∣∣∣FT ]
= max

(
λ, E

[
X | FT

])
= λ+

(
ST−1

T − 1
− λ

)
+

And we are now in good shape to extend our strategy to earlier time steps.
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2.4 Strategy at T − 1

Recall that it is never optimal to switch from bandit A to bandit B, so at time T − 1,
we either pick bandit A twice or pick bandit B and receive (X + VT ).

VT−1(FT−1) = 2λ · 1{2λ≥E[X+VT |FT−1]} + E [X + VT |FT−1] · 1{2λ≥E[X+VT |FT−1]}

= max

(
2λ, E

[
X + VT

∣∣∣FT−1

])
= max

(
2λ,

ST−2

T − 2
+ λ+ E

[(
ST−1

T − 1
− λ

)
+

∣∣∣∣∣FT−1

] )

= 2λ+

(
ST−2

T − 2
− λ+ E

[(
ST−2 +X

T − 1
− λ

)
+

∣∣∣∣∣FT−1

] )
+

= 2λ+

(
ST−2

T − 2
− λ+

1

T − 1
E
[(
X −

{
λ(T − 1)− ST−2

})
+

∣∣∣∣FT−1

] )
+

The value of each state can thus be interpreted as a stream of fixed rewards λ plus a
sequence of nested call options on the values of future states. The fair value bandit
is the smallest λ∗ that makes the option value 0. At time T , λ∗ is the sample mean,
but at time T − 1, because the value of the nested option is non-negative, λ∗ must
be equal to the sample mean or greater. In fact, λ∗ will be strictly greater than the
sample mean if the distribution of X is continuous with infinite support, as there will
be some strictly positive value on the option. One such example is when X is normally
distributed.

We can also go a step further to explicitly compute the distribution of X and hence
the option value under the FT−1 filtration.

fT−1(X) =

∫ ∫
1√
2πσ

exp

{
− (X − µ)2

2σ2

}
hT−2(µ, σ)dθdσ

=

∫ ∫
AT−2

(
2πσ2)−T−1

2 exp

{
− 1

2σ2
·

[
(X − µ)2 +

T−2∑
i=1

(Xi − µ)2

]}
dθdσ

=
AT−2

A∗T−1

=
r∗T−1

3−T

r4−T
T−2

·
Γ
(
T−3

2

)
Γ
(
T−4

2

) ·
√
T − 2

T − 1
·
√
π

∝

 1√
S2
T−2 +X2 + 1

T−1
(ST−2 +X)2

T−3

= γ

 1√
S2
T−2 + 1

T
(ST−2)2 + T

T−1

(
X + 1

T
ST−2

)2
T−3
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where A∗T and r∗T are computed with XT as X and γ is a normalizing constant. λ∗ is
therefore implicit solution to the following equation.

λ− ST−2

T − 2
=

1

T − 1
E
[(
X −

{
λ(T − 1)− ST−2

})
+

∣∣∣∣FT−1

]
=

1

T − 1

∫
fT−1(X)

(
X −

{
λ(T − 1)− ST−2

})
+
dX

=
1

T − 1

∫
λ(T−1)−ST−2

fT−1(X)
[
X − λ(T − 1) + ST−2

]
dX

Rather fortunately, there exists a useful analytical result that makes calculating the
integrals easier, Unfortunately, the result is a recurrence relation in T and does not
have a simple closed form.

Consider the substitutions

∗ A =
√
S2
T−2 + 1

T
(ST−2)2

∗ B =
√

T
T−1

∗ C = 1
T
ST−2

∗ N = T − 3

∗ Z = λ(T − 1)− ST−2

∗ δ = 1
T−2

ST−2

Then we can solve

tan θ =
B(u+ C)

A∫ X (
1√

A2 +B2(u+ C)2

)N
du =

∫ tan−1(B(X+C)
A )

A

B
sec2 θ

(
1

A
√

1 + tan2 θ

)N
dθ

=
AN−1

B

∫ tan−1(B(X+C)
A )

cos(N−2) θ dθ

and by applying the recurrence relation∫
cosn θ′dθ′ =

1

n
cosn−1 θ sin θ +

n− 1

n

∫
cosn−2 θ′dθ′

this gives us

γ−1 =


AN−1

B
· 2
[
N−3
N−2

· N−5
N−4

· · · 2
3

]
N odd

AN−1

B
· π
[
N−3
N−2

· N−5
N−4

· · · 1
2

]
N even

And we resolve the remaining half of the call with the integral∫ X

u

(
1√

A2 +B2(u+ C)2

)N
du =

1

B2 · (2−N)

(
A2 +B2(X + C)2

) 2−N
2

− C

∫ X (
1√

A2 +B2(u+ C)2

)N
du
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The final implicit solution looks like[
Z − δ

]
=

γ

B2(N − 2)

(
A2 +B2(Z + C)2

) 2−N
2

+

γ
(
Z + C

)AN−1

B

[
1

N − 2
cosN−3 θ sin θ +

N − 3

N − 2

1

N − 4
cosN−5 θ sin θ + · · ·

]π
2

tan−1
(
B(Z+C)

A

)

To propagate this strategy forward yet another time step, note that we can write
VT−1(FT−1) = 2λ∗T−1(X1, ..., XT−2) and similarly VT−2 = 3λ∗T−2

VT−2(FT−2) = max

(
3λT−2, E

[
X + VT−1

∣∣∣FT−2

])
= max

(
3λT−2,

ST−2

T − 2
+ 2E

[
λ∗T−1

∣∣∣FT−2

])
= max

(
3λT−2,

ST−2

T − 2
+ 2

∫
fT−2(X)λ∗T−1dX

)

=⇒ λ∗T−k =
1

k

[
ST−k
T − k + (k − 1)

∫
λ∗T−k+1fT−k(X)dX

]
and this creates a recurrence relation of functions in λ∗, allowing us to solve for each
bandit, a fair value λ∗t (Ft) at time t. Of course, computing each λ∗t is computationally
very expensive, as integrals need to be performed over all combinations of Xt+1, ..., XT .

3 Upper and Lower Bounds

3.1 Upper bounds λkU
Explicit computation of λ∗ is expensive, but we can extract an upper bound λ1

U by
adopting a sub-optimal strategy. Assume that t < T and place the following restric-
tion: Free choice is given between bandit A and B for one round, but immediately
after a decision must be made between A or B and that will be the chosen bandit
for all remaining rounds. By removing optionality, this strategy is inferior to the one
before, and we require a higher constant reward λ1

U ≥ λ∗ to be indifferent between A
and B initially.

λ1
U is defined at time t < T by

λ1
U (T − t+ 1) = E[X|Ft] + E

[
(T − t) ·max

(
λ1
U , E[X|Ft+1]

)∣∣∣∣Ft]
=

1

t− 1
St−1 + (T − t) · E

[
max

(
λ1
U ,

1

t

[
St−1 +X

])∣∣∣Ft]
=⇒ λ1

U =
1

t− 1
St−1 +

T − t
t
·
∫
tλ1
U
−St−1

ft(X)
[
X − tλ1

U + St−1

]
dX

and we have an implicit solution very similar to our T − 1 strategy.

Using the following substitutions, with γ defined as before,
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∗ A =
√
S2
t−1 + 1

t+1
(St−1)2

∗ B =
√

t+1
t

∗ C = 1
t+1

St−1

∗ N = t− 2

∗ Z = tλ1
U − St−1

∗ δ = 1
t−1

St−1

1

γ(T − t)

[
Z − δ

]
=

1

B2(N − 2)

(
A2 +B2(Z + C)2

) 2−N
2

+

(
Z + C

)AN−1

B

[
1

N − 2
cosN−3 θ sin θ +

N − 3

N − 2

1

N − 4
cosN−5 θ sin θ + · · ·

]π
2

tan−1
(
B(Z+C)

A

)

In fact, we can generalize this result. Let λkU denote the strategy of choosing freely
between A or B for the next k rounds, after which you must stick to a single bandit
for the remaining rounds. The following inequalities must hold.

λ1
U ≥ λ2

U ≥ · · · ≥ λT−tU = λ∗

3.2 Lower bounds λkL
Similar to our upper bound which was computed from the fair value of a sub-optimal
strategy, we compute the lower bound from the fair value of a super-optimal strategy.
Assume that at time t, we are have to choose between bandit A and B as usual, but
at the end of the round we will additionally be told the true value of µ. This scenario
is optimal to before and will require a lower constant reward for fair-value indifference.

λ1
L(T − t+ 1) = E[X|Ft] + E

[
(T − t) ·max

(
λ1
L, µ

)∣∣∣∣Ft]
=⇒ λ1

L =
1

t− 1
St−1 + (T − t) · E

[(
µ− λ1

L

)
+

]
=

1

t− 1
St−1 + (T − t) ·

∫ ∫
λ1
L

(
µ− λ1

L

)
ht−1(µ, σ) dµdσ

where in the third equality we once again consider the special case of the Gaussian
distribution.∫ ∞

λ1
L

∫ ∞
0

(µ− λ1
L)ht−1(µ, θ) dσdµ

=

∫ ∞
λ1
L

(µ− λ∗L)At−1

∫ ∞
0

(
2πσ2)− t−1

2 exp
{
− 1

2σ2

[
S2
t−1 − 2St−1µ+ (t− 1)µ2

]}
dσdµ

=

∫ ∞
λ1
L

(µ− λ1
L) ·At−1 · 2−

3
2 · π−

t−1
2 ·

[
S2
t−1 − 2St−1µ+ (t− 1)µ2

]− t−2
2

Γ

(
t− 2

2

)
dµ

= rt−3
t−1 ·

√
t− 1

π
·

Γ
(
t−2

2

)
Γ
(
t−3

2

) ∫ ∞
λ1
L

(µ− λ∗L) ·
[
S2
t−1 − 2St−1µ+ (t− 1)µ2

]− t−2
2
dµ
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Once again make the following substitutions,

∗ A = rt−1

∗ B =
√
t− 1

∗ C = 1
t−1

St−1

∗ N = t− 2

and we get an implicit solution very similar in form to λ1
U :

λ1
L − C

rt−3
t−1 ·

√
t−1
π
· Γ( t−2

2 )
Γ( t−3

2 )
(T − t)

=
1

B2(N − 2)

(
A2 +B2(λ1

L + C)2
) 2−N

2 −

(
λ1
L + C

)AN−1

B

[
1

N − 2
cosN−3 θ sin θ + · · ·

]π
2

tan−1

(
B(λ1

L
+C)

A

)

Similar to λkU , we generalize this strategy by denoting it λ1
L, where λkL refers to the

super-optimal strategy of playing optimal under the condition that µ will be revealed
after k additional rounds. It is assumed here that µ is a fixed but unknown value, drawn
from a distribution proportional to its likelihood estimate at time t. The following
inequalities must hold.

λ∗ ≥ λT−t+1
L ≥ · · · ≥ λ2

L ≥ λ1
L

3.3 Tight lower bound λ∗L
Although the formulation of λkL as a sequence of increasing lower bounds is aesthetically
appealing, the current sample mean λ∗L = 1

t−1
St−1, is often a tighter lower bound in

practice. Assuming there are sufficient samples to apply the Central Limit Theorem,
the distribution of the true mean is Gaussian and centered about the sample mean.
This means the expected value of all future draws from bandit B is equal to λ∗L under
the Ft filtration, and consequently λkL ≤ λ∗L.

4 Simulated Results

We are interested in estimating λ∗ as well as the uncertainty of our estimate. From
the above results, two quantities that are easy to compute: λ∗L, the sample mean, and
λ1
U , the upper bound given we must make a permanent choice after the next step.

Given λ∗ ∈ [λ∗L, λ
1
U ], we define the gap size to be λ1

U − λ∗L. A smaller gap is desirable
corresponds to greater precision in estimating λ∗.

The following experiments are conducted where samples are independently drawn from
an N(0, 1) distribution. The two graphs below display the gap size for 30, 50 and 80
observed samples as a function of the number of remaining rounds. Taken over 1000
realizations, the first graph displays the mean gap size and the second displays the
standard deviation of the gap size. At the bottom of the section, we also include a
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third graph of the same experiment conducted over a wider range of numbers of sam-
ples.

As we expect, having more samples results in a smaller mean gap size, as there is
less uncertainty around the value of the bandit’s true mean. But perhaps not so
intuitively, we find that as the number of remaining rounds increases, the gap size
increases sharply to a peak before decreasing quickly and then decaying exponentially.
This can be explained from the implicit form of λ1

U .

λ1
U =

1

t− 1
St−1 +

T − t
t
·
∫
tλ1
U
−St−1

ft(X)
[
X − tλ1

U + St−1

]
dX

Holding everything constant, increasing T − t on the right side increases λ1
U on the

left side. But this will in turn decrease the value of the integral by increasing its lower
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limit. Because we have set up X to follow a normal distribution with parameters drawn
from another normal distribution, ft(X) has fast decaying tails. If we approximate
the distribution of ft(X) as normal, then we see that at small values of T − t, the
relative decrease of the integral is overcompensated by the linear increase in T − t.
But at larger values, the relationship inverts.

These results tell us that as long as the time remaining or the number of observed
samples is very large, the sample mean is a good approximation to λ∗. In the special
case of the multi-armed bandit with infinite rounds, for each round we simply select
the bandit with the highest sample mean. We also notice that the variance of the gap
size follows a similar pattern, but the tails do not decay to zero for large values of
T − t. This can be room for further investigation.

5 Summary and Further Work

To summarize the results of this paper, we have formulated a class of solutions to
the stationary multi-armed bandit problem. Unlike the classical problem, the bandit
distributions here are fixed but unknown. Using a popular trick in bandit literature,
we solve for the case of a single bandit by introducing the idea of a fair-value bandit
always giving a fixed reward λ. By calibrating λ conditional on the current informa-
tion, each variable-reward bandit has an equivalent λ such that we would be indifferent
between the fixed and the variable reward for the next round. The solution would then
be to pick the bandit with the highest λ. We also show that much like the classical
problem, once we choose the fixed-value bandit, it is never optimal to switch back to
the variable bandit.
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It is at this point where we cannot progress much further beyond classical results
like the Glivenko-Cantelli or Central Limit Theorems on the bandits’ distributions
and their means. Absent any distributional assumptions on the bandits’ rewards, the
best approximation we have is their discrete sample distributions. This simple strategy
would have an equivalent solution in the classical problem where the distributions are
known. An alternative is to cast the problem in a Bayesian setting, where we assume
each bandit has a distribution from a family of distributions parameterized by θ. θ
follows a prior distribution which is updated after each sample.

The Bayesian formalism gives us the framework to formulate strategies based on how
we expect our model to change in the future, expressed through the posterior distri-
bution of θ. λ is computed by expressing the value of each state as Vt(Ft), the sum
of future expected rewards given we are at round t, where Ft denotes the information
we have on the distribution thus far. Each Vt is solved iteratively backwards from T ,
where VT is the sample mean. Each λ(Ft) = (T − t)Vt will have an implicit solution
expressed as a sequence of nested call options. But unfortunately, solving for λ is
computationally expensive exponentially in T − t.

We get around this by employing a strictly inferior strategy, one where we have free
choice for 1 round before having to permanently stick with either the fixed or variable
reward. The indifference value of the fixed reward is λ1

U > λ as more reward is needed
for fair value to an inferior strategy. Similarly, we can generalize this to λkU where we
have free choice for only k rounds. This generates a nested sequence of upper bounds
converging to λ. Similarly, we artificially manufacture a superior strategy by assuming
we are given the true value of θ after k rounds, which generates a nested sequence of
lower bounds λkL. Finally, the sample mean itself, is yet another lower bound, which is
often tighter than λkL in practice. Both λ1

U and the sample mean are easy to compute
and we will use them as bounds for the true value of λ. The difference between the
two values is referred to as the gap size.

Running experiments on simulated data drawn from a normal distribution, we ob-
served qualitative results about the gap size as a function of rounds remaining and
rounds elapsed that are in line with what our models predict. What is also interesting
is that the largest gap size for 30 samples (rough limit for application of CLT) is only
∼ 1.4% of the standard deviation of the samples, making the sample mean a fairly
good approximation to λ. This result will vary based on the sample distribution family.

The normal distribution was chosen not only for its ubiquity but also for analyti-
cal convenience. There is room for further work in finding closed-form solutions in
other families of distributions, and comparing the gap sizes to those of the normal
distribution. Alternatively, work can be put towards finding a computationally cheap
solution to λ, or tighter bounds. Finally, we could extend the framework beyond max-
imizing the expected payoff, introducing a penalty term on the variance as well. This
would require significant overhaul of most, if not all the previous results, but should
be of strong academic interest.
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A Python Code for Experiments

import numpy as np
import s c ipy . f a c t o r i a l 2 as f ac2
import s c ipy . gamma as gm
from s c ipy . opt imize import minimize

def a n t i d e r c o s (n , theta ) :
i f n==0:

return theta + np . p i /2
e l i f n==1:

return 1 + np . s i n ( theta )
else :

return np . cos ( theta )∗∗ ( n−1)∗np . s i n ( theta )/n +\
(n−1)/n∗ a n t i d e r c o s (n−2, theta )

def compute gamma (A, B, N) :
gamma inv = A∗∗(N−1)/B∗ f a c2 (N−3)/ fac2 (N−2)
i f N%2==1:

gamma inv ∗= 2
else :

gamma inv ∗= np . p i
return 1/gamma inv

def uppe r e r ro r (Z , A, B, C, N, de l ta , t ime remain ing ) :
gamma = compute gamma (A, B, N)
theta = np . arctan (B∗(Z+C)/A)
intgd = a n t i d e r c o s (N−2, np . p i /2)− a n t i d e r c o s (N−2, theta )
l h s = 1/ t ime remain ing /gamma∗(Z−d e l t a )
rhs = B∗∗( −2)/(N−2)∗(A∗∗2+B∗∗2∗(Z+C)∗∗2)∗∗((2 −N)/2) +\
(Z+C)∗A∗∗(N−1)/B∗ intgd
return ( lhs−rhs )∗∗2

def l o w e r e r r o r ( lambda L , A, B, C, N, t ime remain ing ) :
theta = np . arctan (B∗( lambda L+C)/A)
intgd = a n t i d e r c o s (N−2, np . p i /2)− a n t i d e r c o s (N−2, theta )
l h s = ( lambda L−C)/(A∗∗(N−1))/np . s q r t ( (N+1)/np . p i )\
/gm(N/ 2 . )∗gm( (N−1)/2.)/ t ime remain ing
rhs = B∗∗( −2)/(N−2)∗(A∗∗2+B∗∗2∗( lambda L+C)∗∗2)∗∗((2 −N)/2\
−(lambda L+C)∗A∗∗(N−1)/B∗ intgd
return ( lhs−rhs )∗∗2

def f ind lambda U (T, samples ) :
t = len ( samples )+1
S tm1 = np .sum( samples )
S2 tm1 = np .sum( [ x∗∗2 for x in samples ] )

A = np . s q r t ( S2 tm1+S tm1 ∗∗2/( t +1))
B = np . s q r t ( ( t +1)/ t )
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C = S tm1 /( t +1)
N = t−2
d e l t a = S tm1 /( t −1)
t ime remain ing = T−t
op t a rg s = (A, B, C, N, de l ta , t ime remain ing )
op t va l = minimize ( upper er ror , de l ta , args=opt a rg s ) . x [ 0 ]

return ( op t va l+S tm1 )/ t

def f ind lambda L (T, samples ) :
t = len ( samples )+1
S tm1 = np .sum( samples )
S2 tm1 = np .sum( [ x∗∗2 for x in samples ] )

A = np . s q r t ( S2 tm1−S tm1 ∗∗2/( t −1))
B = np . s q r t ( t −1)
C = S tm1 /( t −1)
N = t−2
t ime remain ing = T−t
op t a rg s = (A, B, C, N, t ime remain ing )
op t va l = minimize ( l owe r e r r o r , C, args=opt a rg s ) . x [ 0 ]

return opt va l
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