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Conditional Hypothesis Testing

Kun Joo Michael Ang

July 16, 2019

Abstract

When testing multiple hypotheses, conventional techniques used
for reducing false positives require all tests to be pre-specified and do
not account for correlation between p-values. This makes them incom-
patible with sequential modelling techniques, where models are built
one-at-a-time and future models benefit from the insight of previous
testing. We propose here a technique for adjusting future tests to in-
corporate prior information and show that this reduces to replacing
the likelihood function with the conditional likelihood. A numerical
algorithm is also developed that uses Monte Carlo integration to effi-
ciently compute conditional acceptance regions from conditional sizes.

Keywords— multiple hypothesis testing, conditional hypothesis testing, con-
ditional likelihood, Monte Carlo integration

1 Introduction

When multiple hypothesis tests are performed on the same data, the risks of en-
countering a False Positive(FP) result increase. In statistical literature, the two
most popular techniques for lowering FP rates are the Bonferroni Correction [1]
and the Benjamini-Hochberg procedure [2]. Both of these ensemble tests involve
performing N hypothesis tests simultaneously, then shrinking the size of each test
to minimize either the False-Discovery Rate or the Family-Wise Error Rate. While
both mathematically elegant and easily implemented, we argue that neither test
has enough flexibility to account for how data is modelled in practice.

It is quite common for hypothesis tests to be developed sequentially, often in
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pursuit of a model that sufficiently explains the data to a specified degree of ac-
curacy. A statistician first analyses the data and then uses his subject matter
expertise to propose a likely model. If attempts to fit the data to the model fail
(at some chosen significance level), the statistician returns to the data and again
uses his expertise to develop a different model, perhaps a more complicated one
that controls for specific effects that the former model failed to account for. The
sequential nature of this form of modelling means future models are constructed
in full knowledge of and conditional on the failure of initial testing. Later tests
are conducted only if prior modelling fails to capture sufficient variation in the
data. Because we cannot know ahead of time how many tests will be conducted,
neither correction technique is fully compatible. While one could naively increase
N retroactively before applying either correction, this can be quite problematic.
Hypothesis tests are often highly correlated when models are nested or similar
in design. The Bonferroni correction is known to over-correct in such cases and
reduces statistical power. Both corrections are also fundamentally incompatible
with the situations described, as they are statements about FPs on a family of
hypotheses constructed before testing, and we are interested in only the current
hypothesis, subject to the information available during the time of testing.

The proposed solution is best described as Conditional Hypothesis Testing. The
technique modifies the likelihood function of the model to incorporate information
about prior testing, then constructs acceptance regions based on the conditional
likelihood. This method of correction ignores family-wise errors in lieu of con-
structing tests with accurate significance levels, subject to any information gained
up to the testing times. It should most clearly be used in situations where the hy-
potheses were not all developed simultaneously prior to testing, and future models
have gained the insight of previous ones.

There are a few other minor inconveniences to the Bonferroni Correction and
the Benjamini-Hochberg that Conditional Hypothesis Testing avoids. Both cor-
rection techniques impose restrictions on individual significance levels αi. In the
Bonferroni correction, the sum of significance levels is bounded above by the fam-
ily significance level and in the Benjamini-Hochberg, acceptance/rejection is con-
trolled by a single family-wise error rate. In practice, we might demand a better fit
(smaller test size) for models with additional degrees of freedom or additional com-
plexity. Conditional Hypothesis Testing allows for this asymmetry by modifying
only the likelihood function, not αi. Finally, neither technique correctly adjusts
for correlation between tests. Acceptance regions will have a size error increasing
in correlation between p-values.
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In the next sections, we will derive the mathematics behind the Conditional Hy-
pothesis Testing technique and remark on sufficient conditions for the existence
of the conditional likelihood function. Taking it further, we will also develop
a numerical algorithm for efficiently computing the conditional likelihood func-
tions and constructing the conditional acceptance regions. This is useful in the
situations where the acceptance regions do not have a closed-form expressions,
likelihood functions are difficult to integrate, and acceptance regions are difficult
to construct from the conditional likelihood.

2 Conditional Hypothesis Testing

Let X be a set of observations and i = 1, 2, .., N be the indices of an ordered set
of hypotheses tests conducted sequentially on X. Ii are indicator functions of the
success of each test, αi its (conditional) size and Ci its acceptance region.

For i = 2, 3, ..., N , define the conditional hypothesis tests as

H0 : (θ ∈ Θ0|I1, I2, ..., Ii−1)

Ha : (θ ∈ Θ\Θ0|I1, I2, ..., Ii−1)

where the model parameter and domain are as in the original hypothesis tests.
Each conditional test is constructed recursively from the results of previous tests.
Both the model fi(I1, I2, ..., Ii−1) and the conditional significance level
αi(fi, I1, I2, ..., Ii−1) can be functions of prior testing and results. Note that even
if αi is independent of prior information, past-dependence is embedded within the
Conditional Hypothesis Test and αi does not have the same interpretation as the
αi in Benjamini-Hochberg or the Bonferroni correction, or any unconditional test
in general.

Next, we can rewrite the conditioning as

H0 :
(
θ ∈ Θ0

∣∣∣X ∈ Di

)
Ha :

(
θ ∈ Θ\Θ0

∣∣∣X ∈ Di

)
where Di =

i−1⋂
k=1

[
Ik · Ck + (1− Ik) · C ′k

]
Letting fi(θ,X) denote the likelihood functions of the models in test i, then the
conditional likelihood is

fi(θ,X
∣∣X ∈ Di) =

0 if fi(θ,X) = 0 or X /∈ Di
fi(θ,X)1{X∈Di}∫

Di
fi(θ,U)dU

otherwise
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To ensure the conditional likelihood is always well-defined, we make the assumption
that Di has strictly positive measure in fi for all θ ∈ Θ whenever fi(θ,X)1{X∈Di} is
non-zero. With these conditional distributions as functions of θ, we can construct
the acceptance region Ci(αi). In practice, this is difficult to do for general Θ,Θ0,
and optimal acceptance regions (uniformly most powerful) are not guaranteed to
exist, but many of the results from classical hypothesis testing will still apply.

For example, for nested models, we can compute the likelihood ratio as before,

Λ = −2 log
supθ∈Θ0

fi(θ,X|X ∈ Di)

supθ∈Θ fi(θ,X|X ∈ Di)

asymptotically perform the Likelihood Ratio Test and the results still hold in the
conditional case.

3 Algorithm Implementation

Our technique has two practical challenges. First, it is necessary to keep track of
the domain Di over time. As is the intersection of multiple acceptance/rejection
regions of former tests, it is likely that no explicit analytical expression for Di

exists. Second, in cases where the acceptance regions Ci(αi) are easy to compute
in the unconditional case, it is not clear what the equivalent regions are in the
conditional case, in particular when we insist on properties such as a uniformly
most powerful test or a concave domain.

We propose the following algorithm that eliminates both problems, presented in
the special case where the null hypothesis is always a point estimate Θ0 = {θ0}
and we are fitting models to explain our data X. Let Ĉi(αi) denote the acceptance
region of test i if it were the only test to be conducted. This will be called the un-
conditional acceptance region and the unhatted version the conditional acceptance
region.

1. For the first test, conduct a regular hypothesis test. Here Ĉ1 = C1 and if
X ∈ C1, we have found a fitted model and can terminate.

2. For further tests, Ci(αi) are constructed as follows.

(a) For a large value of N , simulate N realizations of X from the null
hypothesis density fi(θ0, X)

(b) Approximate
∫
Di
fi(θ,X)dX ≈ 1

N

N∑
k=1

fi(θ0, Xk)1{Xk∈Di}. It will be

shown later that 1{Xk∈Di} can be easily computed.
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(c) Start with the unconditional acceptance region Ĉi(αi) and compute∫
Ĉi(αi)

fi(θ0, X|X ∈ Di)dX. This can again be done by Monte-Carlo

simulation as in (b).

(d) If the computed value in (c) is less than 1−αi, enlarge the acceptance
region by recomputing (c) with α′i < αi. If the converse is true, apply
α′i > αi to shrink the acceptance region.

(e) Once the conditional density integrates to 1−αi in Ĉi(α
′
i), set Ci(αi) =

Ĉi(α
′
i). This acceptance region will have exactly size αi in the condi-

tional hypothesis test.

3. If at any time X ∈ Ci, terminate immediately and declare fi(θ0) the fitted
model.

Figure 1: Example Conditional Acceptance Region for Test 3

This algorithm has several advantages. All the conditional acceptance regions
Ci(αi) have an representation Ĉi(α

′
i), so given any observation X we can easily

compute 1{X∈Ci} by performing the equivalent unconditional test. (2b) is estab-

lished by the relationship 1{X∈Di} =
i−1∏
k=1

1{X/∈Ci}. Because 1{X∈Di} is cheap to

compute for any X, it spares us from having to keep Di in analytic form since we
can always recover the density integral by numerical simulation. The algorithm

5



can also be extended to the case where we continue testing despite having passed
previous tests by simply modifying the corresponding indicator function.

Unfortunately, although this computationally convenient method preserves the size
of each hypothesis test, it cannot guarantee power. Even when the unconditional
acceptance region Ci is uniformly-most-powerful or at least not strictly dominated,
there is no guarantee that Ĉi will not be uniformly dominated by another test in
the conditional setting. In situations where power cannot be compromised, we
recommend constructing the acceptance regions from areas with the highest con-
ditional likelihood. However, this will compromise the algorithm’s simplicity and
can quickly become numerically intractable.

4 Conclusions

This paper considers existing correction techniques for testing multiple hypothe-
ses. Analysing their shortcomings in dealing with sequential hypothesis testing,
we propose a general technique that creates acceptance regions with the correct
conditional power level. Because computing acceptance regions is computationally
expensive under this regime, we propose a more efficient algorithm that produces
tractable acceptance regions with correctly specified significance at the potential
cost of power.
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